Sample-Adaptive Multiple Kernel Learning
نویسندگان
چکیده
Existing multiple kernel learning (MKL) algorithms indiscriminately apply a same set of kernel combination weights to all samples. However, the utility of base kernels could vary across samples and a base kernel useful for one sample could become noisy for another. In this case, rigidly applying a same set of kernel combination weights could adversely affect the learning performance. To improve this situation, we propose a sample-adaptive MKL algorithm, in which base kernels are allowed to be adaptively switched on/off with respect to each sample. We achieve this goal by assigning a latent binary variable to each base kernel when it is applied to a sample. The kernel combination weights and the latent variables are jointly optimized via margin maximization principle. As demonstrated on five benchmark data sets, the proposed algorithm consistently outperforms the comparable ones in the literature. ∗This paper will be published at the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14) held July 27–31, 2014 in Qubec City, Qubec, Canada.
منابع مشابه
3D Face Recognition with Multiple Kernel Learning
A novel 3D face recognition framework based on Multiple Kernel Learning (MKL) is proposed in this work. As a first step, preprocessing is applied in order to extract relevant information and remove noise from 3D face scans. Next, a surface normals and Locally Adaptive Regression Kernels (LARK) features are extracted and a kernel function is associated with them. Finally, the corresponding kerne...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملMaximum Similarity Based Feature Matching and Adaptive Multiple Kernel Learning for Object Recognition
In this thesis, we perform object recognition using (i) maximum similarity based feature matching, and (ii) adaptive multiple kernel learning. Images are likely more similar if they contain objects within the same categories, so how to measure image similarities correctly and efficiently is one of the critical issues for object recognition. We first propose to match features between two images ...
متن کاملConsistency of the Group Lasso and Multiple Kernel Learning
We consider the least-square regression problem with regularization by a block 1-norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1-norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014